Glcm and Glrlm Based Texture Features for Computer-aided Breast Cancer Diagnosis

نویسندگان

  • Paweł FILIPCZUK
  • Thomas FEVENS
  • Adam KRZYŻAK
  • Andrzej OBUCHOWICZ
چکیده

This paper presents 15 texture features based on GLCM (Gray-Level Co-occurrence Matrix) and GLRLM (Gray-Level Run-Length Matrix) to be used in an automatic computer system for breast cancer diagnosis. The task of the system is to distinguish benign from malignant tumors based on analysis of fine needle biopsy microscopic images. The features were tested whether they provide important diagnostic information. For this purpose the authors used a set of 550 real case medical images obtained from 50 patients of the Regional Hospital in Zielona Góra. The nuclei were isolated from other objects in the images using a hybrid segmentation method based on adaptive thresholding and kmeans clustering. Described texture features were then extracted and used in the classification procedure. Classification was performed using KNN classifier. Obtained results reaching 90% show that presented features are important and may significantly improve computer-aided breast cancer detection based on FNB images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four typ...

متن کامل

Classifying Cyst and Tumor Lesion Using Support Vector Machine Based on Dental Panoramic Images Texture Features

Abstract— Dental radiographs are essential in diagnosing the pathology of the jaw. However, similar radiographic appearance of jaw lesions causes difficulties in differentiating cyst from tumor. Therefore, we conducted a development of computer-aided classification system for cyst and tumor lesions in dental panoramic images. The proposed system consists of feature extraction based on texture u...

متن کامل

Classifying Benign and Malignant Mass using GLCM and GLRLM based Texture Features from Mammogram

Mammogram–breast x-ray is considered the most effective, low cost, and reliable method in early detection of breast cancer. Although general rules for the differentiation between benign and malignant breast lesion exist, only 15 to 30% of masses referred for surgical biopsy are actually malignant. In this work, an approach is proposed to develop a computer-aided classification system for cancer...

متن کامل

Texture Analysis of Supraspinatus Ultrasound Image for Computer Aided Diagnostic System

OBJECTIVES In this paper, we proposed an algorithm for recognizing a rotator cuff supraspinatus tendon tear using a texture analysis based on a histogram, gray level co-occurrence matrix (GLCM), and gray level run length matrix (GLRLM). METHODS First, we applied a total of 57 features (5 first order descriptors, 40 GLCM features, and 12 GLRLM features) to each rotator cuff region of interest....

متن کامل

A Study on Morphological and Textural Features for Classifying Breast Lesion in Ultrasound Images

Developing a Computer Aided Diagnosis (CAD) system for Breast Ultrasound (BUS) is a high exigent work in medical imaging analysis systems. BUS detects abnormalities or suspicious regions accurately that is misspelled by mammogram, and helps to find the varying degrees of malignancy. Extracting discriminating features in CAD is a most prominent task that results in good diagnosis. This study ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012